Unbiased Photon Gathering for Light Transport Simulation Supplementary Material

1 Computing the Angular Bound

In this section, we will explain the mathematical details behind the angular bound of tentative ray tracing, which we have briefly described in Section 3.4 of the paper. We need to choose an angular bound so that Eq. (16) in the paper is analytically integrable. In practical implementation, the direction of a tentative ray is generated by uniform sampling a random number in the $2 D$ space of $[0,1] \times[0,1]$. Therefore, we choose an angular bound within which the random numbers generating tentative rays cover an axisaligned bounding box (AABB) in the $2 D$ space. Then the probability $p^{b}\left(\overline{\mathbf{x}}_{s^{\prime}, t^{\prime}-1}\right)$ is the AABB area.

Here we take two common BSDFs as examples, including the Lambertian model [Lambert 1760] and the Phong model [Phong 1975], and develop an AABB bound in a uniform random number space. The bound is both used to sample the tentative rays and compute the probability density integration. We also show how to handle BSDFs that are a linear combination of multiple components.

1.1 Hemisphere Angular Bound

Given a reflective material, the tentative ray $z_{t^{\prime}-1} \rightarrow z$ is confined within the upward hemisphere defined by the surface normal at $z_{t^{\prime}-1}$. The neighborhood we wish to sample is a sphere located at $y_{s^{\prime}}$ with radius d.

For brevity, we use the local frame $\{X, Y, Z\}$ at $z_{t^{\prime}-1}$, where Z is the surface normal. The direction $z_{t^{\prime}-1} \rightarrow z$ can be represented in spherical coordinates as $\{\theta, \phi\}$, where θ and ϕ are the polar and azimuthal angles respectively. When sampling rays, θ and ϕ are typically computed from two independent uniform random numbers $\left\{r_{\theta}, r_{\phi}\right\}$

$$
\begin{equation*}
\theta=f_{\theta}\left(r_{\theta}\right), \quad \phi=f_{\phi}\left(r_{\phi}\right), \tag{1}
\end{equation*}
$$

where f_{θ} and f_{ϕ} are mapping functions for importance sampling. Since f_{θ} and f_{ϕ} are typically monotonic, an AABB bound $\{\theta, \phi\} \in$ $\Theta \times \Phi$ in the angular space $\theta \times \phi$ can be directly converted to an AABB bound $\left\{r_{\theta}, r_{\phi}\right\} \in R_{\theta} \times R_{\phi}$ in the random number space $r_{\theta} \times r_{\phi}$

$$
\begin{align*}
& R_{\theta}=\left[f_{\theta}^{-1}(\theta \mid \Theta)_{\mathrm{inf}}, f_{\theta}^{-1}(\theta \mid \Theta)_{\mathrm{sup}}\right] \\
& R_{\phi}=\left[f_{\phi}^{-1}(\phi \mid \Phi)_{\mathrm{inf}}, f_{\phi}^{-1}(\phi \mid \Phi)_{\mathrm{sup}}\right], \tag{2}
\end{align*}
$$

where the inf and sup subscripts refer to the lower and upper bound respectively.

By definition, the mappings f_{θ} and f_{ϕ} are isometric. Therefore, the probability density integration p^{b} is simply the AABB area in the random number space

$$
\begin{equation*}
p^{b}\left(\overline{\mathbf{x}}_{s^{\prime}, t^{\prime}-1}\right)=\left\|R_{\theta} \times R_{\phi}\right\| \tag{3}
\end{equation*}
$$

A simple conservative angular bound of the spherical neighborhood

Figure 1: Three different cases of angular bounds. (a) direction is not bounded, as $z_{t^{\prime}-1}$ is inside the neighborhood. (b) only θ is bounded, as Z-axis intersects the neighborhood. (c) both θ and ϕ are bounded.

40 can be written for the three cases in Fig. 1

$$
\left\{\begin{array}{l}
\Theta=\left[0, \frac{\pi}{2}\right] \\
\Phi=[0,2 \pi] \\
\Theta=\left[0, \min \left(\frac{\pi}{2}, \theta_{c}+\arcsin \frac{d}{l}\right)\right], \quad \text { else if } \frac{d}{l} \geq \sin \left(\theta_{c}\right), \tag{4}\\
\Phi=[0,2 \pi] \\
\Theta=\left[\theta_{c}-\arcsin \frac{d}{l}, \min \left(\frac{\pi}{2}, \theta_{c}+\arcsin \frac{d}{l}\right)\right] \\
\Phi=\left[\phi_{c}-\arcsin \frac{d}{l \sin \theta_{c}}, \phi_{c}+\arcsin \frac{d}{l \sin \theta_{c}}\right]
\end{array}, \text { otherwise },\right.
$$

where $\left\{\theta_{c}, \phi_{c}\right\}$ are the spherical coordinates of the direction vector $z_{t^{\prime}-1} \rightarrow y_{s^{\prime}}$, and l is the distance to the neighborhood center $l=$ $\left\|z_{t^{\prime}-1}-y_{s^{\prime}}\right\|$. In the first case shown in Fig. 1(a), $z_{t^{\prime}-1}$ is inside the neighborhood sphere, and a bound cannot be placed on $\{\theta, \phi\}$. In the second case shown in Fig. 1(b), the neighborhood sphere intersects the Z-axis, and only θ is bounded. In the third case shown in Fig. 1(c), the neighborhood sphere is well separated from the Z axis, and we can bound both θ and ϕ. The AABB bound in random number space can be computed using Eq. (2), which depends on the BSDF importance sampling functions f_{θ} and f_{ϕ}.

1.2 Bounds for Lambertian and Phong BSDFs

1.2.1 Lambertian BSDF

The Lambertian diffuse BSDF is a simple constant function

$$
\begin{equation*}
f_{s}^{\text {Lambertian }}\left(\omega_{i}, \omega_{o}\right)=\kappa, \tag{5}
\end{equation*}
$$

where we parameterize the $\operatorname{BSDF} f_{s}$ over directions. ω_{i} corre55 sponds to the direction $z_{t^{\prime}-1} \rightarrow z_{t^{\prime}-2}$, and ω_{o} corresponds to the 56

As the constant f_{s} does not affect sampling, the outgoing ray direction $z_{t^{\prime}-1} \rightarrow z$ for a Lambertian BSDF is typically importancesampled from the cosine part of the geometric term

$$
\begin{equation*}
p_{x}\left(z_{t^{\prime}-2} \rightarrow z_{t^{\prime}-1} \rightarrow z\right) \propto \cos \theta_{o} . \tag{6}
\end{equation*}
$$

The importance function f_{θ} can be found by inverting the cumulative distribution function

$$
\begin{align*}
& f_{\theta}^{-1}\left(\theta_{o}\right)=2 \int_{\theta_{o}}^{\frac{\pi}{2}} \cos \theta \sin \theta \mathrm{~d} \theta=\cos ^{2} \theta_{o}, \\
& f_{\theta}\left(r_{\theta}\right)=\arccos \sqrt{r_{\theta}} \tag{7}
\end{align*}
$$

and f_{ϕ} is simply:

$$
\begin{equation*}
f_{\phi}\left(r_{\phi}\right)=2 \pi r_{\phi} . \tag{8}
\end{equation*}
$$

The bounds and p^{b} can be computed using Eq. (2) and Eq. (3):

$$
\begin{aligned}
& r_{\theta} \in\left[\cos ^{2} \Theta_{\text {sup }}, \cos ^{2} \Theta_{\mathrm{inf}}\right] \\
& r_{\phi} \in\left[\frac{\Phi_{\text {inf }}}{2 \pi}, \frac{\Phi_{\text {sup }}}{2 \pi}\right] \\
& p^{b}=\left(\cos ^{2} \Theta_{\mathrm{inf}}-\cos ^{2} \Theta_{\text {sup }}\right)\left(\frac{\Phi_{\text {sup }}}{2 \pi}-\frac{\Phi_{\text {inf }}}{2 \pi}\right) .
\end{aligned}
$$

1.2.2 Phong BSDF

The Phong BSDF [1975] is a perceptually based model for glossy reflectance, which is symmetric around the mirror reflectance direction ω_{r}

$$
\begin{equation*}
f_{s}^{P h o n g}\left(\omega_{i}, \omega_{o}\right)=\kappa \cos ^{k} \theta_{o-r} \tag{9}
\end{equation*}
$$

where θ_{o-r} is the angle between ω_{o} and ω_{r}. As k is typically a large value which makes f_{s} dominate p_{x}, we directly use a normalized version of $f_{s}^{P h o n g}$ as the importance function and leave the cosine term mentioned in the previous subsection out of the sampling.

For convenience, we first sample the angles θ_{o-r} and ϕ_{o-r}, then compute ω_{o} from it. Similar to the Lambertian case, the importance function f_{θ} can be found by inverting the cumulative distribution function:

$$
\begin{align*}
& f_{\theta}^{-1}\left(\theta_{o-r}\right)=2 \int_{\theta_{o-r}}^{\frac{\pi}{2}} \cos ^{k} \theta \sin \theta \mathrm{~d} \theta=\cos ^{k+1} \theta_{o-r} \\
& f_{\theta}\left(r_{\theta}\right)=\arccos r_{\theta}^{\frac{1}{k+1}} \tag{10}
\end{align*}
$$

and f_{ϕ} is the same as Eq. (8). The bounds and p^{b} are:

$$
\begin{aligned}
& r_{\theta} \in\left[\cos ^{k+1} \Theta_{\text {sup }}, \cos ^{k+1} \Theta_{\text {inf }}\right] \\
& r_{\phi} \in\left[\frac{\Phi_{\text {inf }}}{2 \pi}, \frac{\Phi_{\text {sup }}}{2 \pi}\right] \\
& p^{b}=\left(\cos ^{k+1} \Theta_{\text {inf }}-\cos ^{k+1} \Theta_{\text {sup }}\right)\left(\frac{\Phi_{\text {sup }}}{2 \pi}-\frac{\Phi_{\text {inf }}}{2 \pi}\right) .
\end{aligned}
$$

Note that the direction ω_{o} is sampled in the upper hemisphere defined by ω_{r}, not the surface normal. Consequently, the direction may point into the surface, resulting in the measurement contribution being constantly 0 . While such rays are wasted, in practice this does not occur very frequently because for highly glossy surfaces ω_{o} typically stays near ω_{r}. As long as this case is tested and the measurement contribution is properly zeroed, the final Monte Carlo estimation remains unbiased.

1.3 Bounds for Multiple Component BSDF

Importance Sampling in General. A complex BSDF is frequently defined as a linear combination of multiple components, such as a diffuse one and a specular one. The formal definition is

$$
\begin{equation*}
f_{s}=\sum_{i=1}^{h} f_{s, i} \tag{11}
\end{equation*}
$$

where h is the number of components. The corresponding probability density of importance sampling without angular bound can be also formulated with respect to the multiple components

$$
\begin{align*}
& p=\frac{f_{s}}{\int_{\Omega} f_{s} \mathrm{~d} \omega_{o}}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}}{\sum_{i=1}^{h} \kappa_{i}}, \tag{12}\\
& \kappa_{i}=\int_{\Omega} f_{s, i} \mathrm{~d} \omega_{o}, \quad p_{i}=\frac{f_{s, i}}{\kappa_{i}}, \tag{13}
\end{align*}
$$

where Ω is the domain of outgoing directions. κ_{i} and p_{i} represent the reflectivity and sampling probability density for an individual component $f_{s, i}$ respectively.

Importance sampling of a multiple-component BSDF is typically achieved by first selecting an individual component i to sample with a probability proportional to the respective reflectivity values κ_{i}. Then the sample is generated for component i using its importance function p_{i}. Formally, the importance sampling takes two steps.

1. Randomly select one component based on reflectivity. The i-th component is chosen with probability

$$
\begin{equation*}
p_{\text {select }, i}=\frac{\kappa_{i}}{\sum_{j=1}^{h} \kappa_{j}} . \tag{14}
\end{equation*}
$$

2. Sample a direction using the chosen component.

What we are interested in is the acceptance probability p^{c} for the hypothetical Russian roulette event (Section 3.2 of the paper). Note that the Russian roulette event itself only tests whether a ray hits a fixed spatial neighborhood, which does not depend on the BSDF component used to sample the ray. Consequently, we can simply combine the per-component probability values p_{i}^{c} using Eq. (12)

$$
\begin{equation*}
p^{c}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}^{c}}{\sum_{i=1}^{h} \kappa_{i}} \tag{15}
\end{equation*}
$$

Angular Bound. For efficiency and implementation convenience, we choose to apply an independent angular bound for each component, as shown in Fig. 2. Mathematically speaking, this corresponds to applying the same importance sampling process to an updated set of BSDF components $\bar{f}_{s, i}$. Assuming the angular bound for each component i has already been computed as $\left\{\Theta_{i}, \Phi_{i}\right\}$, one can define $\vec{f}_{s, i}$ explicitly as

$$
\begin{align*}
& \bar{f}_{s}=\sum_{i=1}^{h} \bar{f}_{s, i}, \tag{16}\\
& \bar{f}_{s, i}= \begin{cases}f_{s, i}, & \text { if } \omega_{o} \in\left\{\Theta_{i}, \Phi_{i}\right\}, \\
0, & \text { else }\end{cases} \tag{17}
\end{align*}
$$

Figure 2: Angular bound with two component BSDF. The bounds of the two components are different. But the neighborhood S is included in their intersection.

Substituting Eq. (17) into the general multi-component sampler in Eq. (12), we formulate the importance sampling probability for \bar{f}_{s}

$$
\begin{align*}
& p=\frac{\bar{f}_{s}}{\int_{\Omega} \bar{f}_{s} \mathrm{~d} \omega_{o}}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b} \bar{p}_{i}}{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b}}, \tag{18}\\
& p_{i}^{b}=\int_{\Theta_{i} \times \Phi_{i}} p_{i} \mathrm{~d} \omega_{o}, \quad \bar{p}_{i}=\frac{\bar{f}_{s, i}}{\kappa_{i} p_{i}^{b}}, \tag{19}
\end{align*}
$$

where p_{i}^{b} is the probability density integration of each component i inside its own bound, and $\kappa_{i} p_{i}^{b}$ can be thought of as an effective reflectivity for the angularly bounded BSDF component $\bar{f}_{s} . \bar{p}_{i}$ is the normalized probability density of an individual component $\bar{f}_{s, i}$. The importance sampling consists of the same two steps as we introduced for multiple components without angular bounds. However, Eq. (14) has to be updated accordingly. Replacing the original reflectivity κ_{i} with the effective reflectivity $\kappa_{i} p_{i}^{b}$, we get

$$
\begin{equation*}
p_{\text {select }, i}^{b}=\frac{\kappa_{i} p_{i}^{b}}{\sum_{j=1}^{h} \kappa_{j} p_{j}^{b}} \tag{20}
\end{equation*}
$$

Applying the same procedure to the Russian roulette probability $p^{c}{ }_{161}$ defined in Eq. (15), we get

$$
\begin{equation*}
\bar{p}^{c}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b} \bar{p}_{i}^{c}}{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b}}, \tag{21}
\end{equation*}
$$

where \bar{p}_{i}^{c} is the per-component Russian roulette acceptance probability after applying the corresponding angular bound. By definition, it differs from the original p_{i}^{c} by the normalization factor p_{i}^{b}

$$
\begin{equation*}
\bar{p}_{i}^{c}=\frac{p_{i}^{c}}{p_{i}^{b}} \tag{22}
\end{equation*}
$$

Substituting Eq. (22) into Eq. (21), we get

$$
\begin{equation*}
\bar{p}^{c}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}^{c}}{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b}} \tag{23}
\end{equation*}
$$

Finally, we can compare p^{c} in Eq. (15) with \bar{p}^{c} in Eq. (23) to define the multi-component normalization factor p^{b}

$$
\begin{equation*}
p^{b}=\frac{p^{c}}{\bar{p}^{c}}=\frac{\sum_{i=1}^{h} \kappa_{i} p_{i}^{b}}{\sum_{i=1}^{h} \kappa_{i}} . \tag{24}
\end{equation*}
$$

Given a non-negative function $f(x)$ defined in a domain Ω, Booth [2007] aimed to evaluate the reciprocal of its integral

$$
\begin{equation*}
I=\frac{1}{\int_{\Omega} f(x) \mathrm{d} x} \tag{25}
\end{equation*}
$$

Assuming $\int_{\Omega} f(x) \mathrm{d} x \in(0,1)$, Eq. (25) can be evaluated as a series expansion:

$$
\begin{align*}
& I=\frac{1}{1-g}=\sum_{i=0}^{+\infty} g^{i} \tag{26}\\
& g=1-\int_{\Omega} f(x) \mathrm{d} x
\end{align*}
$$

first time after N tries, we have:

$$
\begin{align*}
& \hat{g}_{j}= \begin{cases}1, & j<N \\
0, & j \geq N\end{cases} \tag{28}\\
& \hat{I}=1+\sum_{i=1}^{N} \prod_{j=1}^{i} \hat{g}_{j}=N,
\end{align*}
$$

References

Booth, T. E. 2007. Unbiased Monte Carlo estimation of the reciprocal of an integral. Nuclear Science and Engineering 156, 3, 403-407.

Lambert, J. H. 1760. Photometria Sive de Mensure de Gratibus Luminis, Colorum Umbrae. Eberhard Klett.

Phong, B. T. 1975. Illumination for computer generated pictures. Comтип. ACM 18, 6 (June), 311-317.

